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corrections

J W Rasul and Yujong Bai
Physics Department, University of Michigan, Ann Arbor, MI 48109-1120, USA
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Abstract. We investigate the charge density correlation function in the slave fermion
representation of the two-dimensionalt–J model using the self-consistent perturbation approach
developed for that model by Liet al (1992 Phys. Rev. B 45 5428), which to lowest order
in (t, J ) gives a diagrammatic equivalent to the usual mean field theory. At the lowest order
the equal-time correlation function (interpreted as the holon density correlation function) shows
similar features to the results of recent high-temperature series calculations. However the loop
corrections, representing scattering of holes by the antiferromagnetic spin fluctuations, lead to
a divergent compressibility at low temperatures for low hole dopings (δ) and smallJ/t , which
we interpret as indicating a tendency towards phase separation at a temperaturet2δ/J .

1. Introduction

The question of charge correlations in low-dimensional strongly correlated electron systems
and their relation to the underlying spin degrees of freedom remains a central issue in
condensed matter physics. On the one hand the Luttinger liquid scenario [1] suggests
separation of spin and charge in momentum space with, as some recent numerical results
[2] suggest, separate Fermi surfaces. On the other hand a large section of the community
favours spin and charge separation in real space, the so-called phase separation viewpoint
[3–5] where charge carriers congregate in the same region of space so as to lower their
kinetic energy.

Analytic formulations that separate out spin and charge explicitly have been invoked
ever since the heavy-fermion systems were discovered. One of these, the slave boson [6]
approach, treats the spins as fermionic and the charge as bosonic and generally leads to a
Fermi liquid ground state in simple treatments, although some careful analyses of single and
multiband models of high-Tc systems [7, 8] do show phase separation at least at the mean
field level. One of the present authors has shown that by going beyond mean field level as
far as the two-loop level (order 1/N2) that some aspects of Luttinger liquid behaviour do
appear in the single-bandt–J model [9] if treated within this approach.

On the other hand, approaches to the quantum antiferromagnet have led to a
rather different point of attack. It was shown by Arovas and Auerbach [10] that the
‘Schwinger boson’ representation of spin operators by combinations of boson operators
Si = 1/2b+

iσ σbiσ , again with the appropriate local constraints enforced by Lagrange
multipliers, when described in a mean field manner, could describe the spin liquid nature of
the 1D Heisenberg model. In particular, the specific heat and low-temperature magnetization
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could be reconciled with the antiferromagnetic spin wave spectrum. Good qualitative results
for both antiferromagnetic and ferromagnetic couplings (when compared with exact Bethe
ansatzresults) were obtained.

The good agreement in the 1D problem for the Schwinger boson representation of spins
led other authors to explore the extension to the 2D doped antiferromagnet. This requires
including a spinless fermion operator (fi) to label the charged ‘hole’ degree of freedom,
i.e.,

Ciσ → f +
i biσ (1)

again enforcing the constraint that each site be occupied either by a spin or by a hole. A
number of authors [11–13] have studied the mean field theory of this model, concluding
that the AF order in the half-field state is distorted by doping to yield an incommensurate
ordering or ‘spiral’ phase. The ‘inverse pitch’ or incommensurate wavevector of this state
varies proportionally with doping, although for larger dopings a ferromagnetic phase is
found to be stable. Although earlier works were concerned with the nature of the spin
ordering in such systems, it is also interesting to consider the charge degree of freedom in
this ‘slave fermion’ representation.

The hole doping is then constrained to be equal to the number of holes, so that the
holons have a Fermi surface identical to that of spinless electrons with densityδ. It should
be stressed however that the holons themselves are not the physical electrons seen for
example in a photoemission experiment. These require calculation of the convolution of
holon and spinon—in fact mean field treatments [14] give electron Fermi surfaces centred
on the incommensurate wavevector, while more careful analysis shows the transition, as the
hole doping is increased, to a conventional electron-like Fermi surface [15]. Nevertheless,
it should be remembered that the mean field slave fermion method itself has a problem
reproducing the large Fermi surfaces seen in photoemission experiments—for such purposes
the slave boson method is better suited. More recent work on this issue [16] has focused
on which slave representation is better for the case of infiniteU . A comparison of the
ground state energies obtained (for various lattices) by the slave boson and slave fermion
approaches with numerical results suggest that the slave boson representation is better for
hole dopings larger than one-third—otherwise the slave fermion representation is better.

Our particular interest in the charge fluctuation spectrum of the slave fermion
representation of thet–J model stems from recent numerical work on the 2Dt–J model,
in which the high-temperature series expansion method was applied [2]. This method, in
which correlation functions are expanded in ‘cumulants’, allows for expansion to fairly
high orders in [t, J ]/temperature. The low-temperature limit is taken by applying Padé
approximants to resum the series. The method has a long history in statistical mechanics,
being able to compute critical exponents near phase transitions to excellent accuracy. The
interesting result of this method for thet–J model lies in the charge susceptibility at equal
times 〈1n(k, 0) 1n(−k, 0)〉. Normally this correlation function shows a peak at a value
of k corresponding, for non-interacting electrons, to twice the Fermi surface wavevector of
the spin-12 non-interacting electrons(2kF ). In the strongly correlatedt–J model this peak
is found to be twice the Fermi surface wavevector for spinless non-interacting electrons.

This is a new and surprising result. Our aim in this paper therefore is to reexamine the
slave fermiont–J model in which the charge degrees of freedom naturally correspond to
spinless holons. Following the work of Liet al [17] we treat the single-particle propagators
using a self-consistent perturbation theory in the hopping rate and exchange parameter which
reproduces the saddle point results of earlier works. This approach has the advantage of
allowing loop corrections to be evaluated diagrammatically.
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We start by interpreting the charge fluctuations as being due to the propagation of holon
density operators. We then examine the charge correlation function using perturbation theory
in t (valid for t � J ) in terms of the fermion propagators calculated at the self-consistent
level. We find the fermions experience an interaction at this order mediated by the exchange
of pairs of Schwinger bosons. As far as the charge susceptibility is concerned, whereas the
mean field level reproduces qualitatively the results of Puttikaet al [2], we find that dressing
the fermion loops entering the charge susceptibility with ladder and bubble diagrams to
all orders in the boson induced fermion–fermion interaction leads to an instability at low
wavevectors and energies.

We interpret this instability as denoting a tendency towards phase separation—although
such conclusions have in fact been reached before by treating the slave fermion model at
mean field level [19, 20], we are able to provide a mechanism for such an instability arising
from the exchange of antiferromagnetic fluctuations. The plan of the paper is as follows:
in section 2 we recap on the self-consistent theory and in section 3 we discuss the lowest-
order charge susceptibility. In section 4 we include the loop corrections and we present the
conclusions and place the work in the context of other studies in section 5.

2. Self-consistent perturbation theory

The t–J model Hamiltonian which is equivalent to the large-U (J = 4t2/U ) Hubbard
model includes hopping (t) of electrons between neighbouring sites and a spin-exchange
(J ) interaction.

H = −t
∑
〈ij〉

∑
σ

C+
iσCjσ + HC + J

∑
〈ij〉

(
SiSj − 1

4ninj

)
(2)

where C+
iσ is the creation operator of an electron with spinσ or at site i and the sum

is over nearest-neighbour sites. Due to the strong Coulomb repulsion between electrons
with opposite spins at the same site, we need to impose the single-occupancy constraint∑

σ C+
iσCiσ = 1 or 0. Then the effective Hamiltonian is written explicitly in terms of

spin-pair operatorsB+
ij defined as

B+
ij = 1√

2

(
b+

i↑b+
j↓ − b+

i↓b+
j↑

)
(3)

for singlet states. In addition, we represent the electron as a composite particle of (fermion)
hole times (boson) spin. Then the on-site constraint∑

σ

b+
iσ biσ + f +

i fi = 1 (4)

is imposed on average, with
∑

i f
+
i fi = δN (δ is the hole doping concentration)

incorporated into the Hamiltonian. The electron sum rule∑
σ

C+
iσCiσ = 1 − δ (5)

is then satisfied as well.
Now the Hamiltonian in the singly occupied subspace is given in terms of thesef (hole)

andb (spin) operators

H = −t
∑
〈ij〉

∑
σ

[
fif

+
j b+

iσ bjσ + HC
] − J

∑
〈ij〉

B+
ij Bij − µF

∑
i

f +
i fi

−µB

∑
iσ

(
b+

iσ biσ + f +
i fi − 1

)
. (6)
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The Lagrange multiplier termsµF and µB are introduced to minimize the averaged
Hamiltonian. The (fictitious) chemical potentialsµB and µF are treated as fixed, until
we determine them in the end from the condition that the total number of particles is fixed.
To study the spin–spin and hole–spin correlations, we need to define appropriate propagators
in perturbation expansions. These expansions are then performed in powers of the hopping
rate and exchange parameter [17]. Since the Schwinger boson number is known not to be
strictly conserved in the mean field treatments of thet–J model we have to allow for the
existence of ‘anomalous propagators’ which create or destroy anti-parallel spin pairs.

We work explicitly with finite-temperature expressions i.e. using the Matsubara
formalism in which the averages are taken over a grand canonical ensemble. The anomalous
(spin-boson) propagators are defined asF(k, τ ) = −〈Tτb

+
−k↓(τ )b+

k↑(0)〉. F(k, τ ) is the
probability amplitude of creating a pair of spins with opposite momenta and spin states. It
can be shown thatF(k, 0) is proportional to the energy gap of the spin excitation spectrum.
We also need to introduce the normal propagatorG(k↑, τ ) = −〈Tτbk↑(τ )b+

k↑(0)〉.
Substituting each normal propagator in perturbation expansions by the generalized one,

we obtain valid propagators for the states undergoing phase transitions. The structure of
self-consistent perturbation theory is maintained using Dyson’s equation, written in terms of
the full matrix propagators. The boson self-energy in this generalized formulation above is
calculated to first order in the hopping and exchange parts of the Hamiltonian, and represents
the internal spin-aligning field (the diagonal elements) as well as the spin-pairing field (the
off-diagonal elements).

Next we transform the hole-fermionfi and spin-bosonbiσ operators to momentum
space on a square lattice with lattice constanta. We have then to introduce the ‘form
factor’ γ (p) = cos(px) + cos(py) in terms of which the hopping part of the interaction
becomes

Ht = − 2t

N2

∑
k,p,q

∑
σ

γ (k − p)fkf
+
k−qb

+
pσ bp−q,σ + HC. (7)

Now we compute the contribution of theHt part to the self-energy of the boson. The
first-order self-energy diagram for the boson propagator is the dressed fermion loop. We
introduce the order parameterφ = 1

N

∑
k γ (k) 1

β

∑
ωn

Gf (k, ωn) = 〈f +
i fj 〉 which is a hole-

hopping amplitude or charge-bonding parameter, since the hole is the charge carrier in this
representation (a non-zero value ofφ implies hole mobility). Then, the self-energy is written
in terms of this as (for the diagonal elements)

∑
bb+(p, ω) = −tγ (p)φ.

As with Ht , we can also carry out self-consistent first-order perturbation theory in
HJ . The difference this time is that we have to consider off-diagonal as well as diagonal
self-energies resulting from spin-pairing interaction. The self-consistent approach has the
advantage that dynamical corrections can be systematically calculated, as we shall we in
the next section.

TransformingHJ to momentum space we obtain

HJ = −J
∑
kpq

γc(k − p)
(
b+

k b+
−k−q − b+

k b+
−k−q

)(
bpb−p+q − bpb−p+q

)
. (8)

Then the off-diagonal self-energy becomes
∑

b+b+(k) = Jγs(k)1 whereγs(k) = sin(kx) −
sin(ky) and the spin-pairing order parameter is defined as1 = (1/2β)

∑
pωn

γs(p)F (p, ωn)

with a similar expression for the conjugate self-energy. The diagonal part of the
boson self-energy can likewise be obtained as

∑
bb+ = −Jγc(p)χ/2 with the spin-

hopping order parameter (arising from the exchange term alone) defined byχ =
(1/2β)

∑
p,ωn

γc(p)G(p, ωn).
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Defining Q(p) = (tφ − J
2 χ)γc(p), we obtain the diagonal elements of the inverse

Bose propagator as−ω − µB + Q(p) while the off-diagonal elements of the inverse Bose
propagator are simplyJγs(p)1. One can simply derive the dispersion relation for the spin
excitations from the poles of the matrix propagator as [15]

ω2 = (
µB − Q(p)

)2 − J 2γs(p)212 (9)

which shows a gap on the scale ofJ . The minimum ofω decreases as the temperature

approaches zero. The zero mode is obtained atω0 =
√

(tφ − J
2 χ)2 + (J1)2 at wavevectors

k0 with cosk0 = −(tφ − J
2 χ)/ω0. At k0 = 0, the system is in a ferromagnetic phase, while

at k0 = π
2 it is antiferromagnetic. The quantitiesφ, χ and1 representing the hole hopping

rate, the ferromagnetic order parameter and antiferromagnetic order parameter respectively
are then determined self-consistently. These self-consistent relations are identical to the
results of mean field theory, which have been discussed in a number of papers [11, 12, 17].
In the undoped limit (δ = 0), the spin and holon hopping rates are zero, and1 is at its
maximum value. Bothχ andφ increase approximately linearly withδ increasing while1
decreases and vanishes forδ = J/t . At T = 0 (for 2D) there is Bose condensation of
spins into a spiral spin state with long-range order. At finite temperature, the spins show
short-range incommensurate antiferromagnetic correlations for small dopings. At dopings
larger thanδ ∼ J/t , the ordering tendencies become ferromagnetic. We will return to a
more detailed examination of the mean field equations later.

As with the boson propagator, we now calculate the hole-fermion Green function by
first computing its self-energy. The first-order diagram for the (hole) self-energy is the
boson loop with the interaction from aboveHt at the vertex. Then the self-energy of the
hole reads

6t
f (k) = −2t

N2

∑
p

γ (k − p)
1

β

∑
ωn

[
Gb

(
p, ωn

)
(11) + Gb

(
p, ωn

)
(22)

]
(10)

where the diagonal matrix elements of the Bose propagator, i.e.Gb(p, ωn) are given above.
Employing the spin-hopping OP we had earlier the self-energy written6f (k) = −2tχγc(k)

which shows a tight-binding dispersion relation, coming from the poles of the fermion Green
function

Gf (k, ω) = 1/
[
ω + µB + 2tχγc(k)

]
. (11)

The chemical potential is determined from the condition
∑

k, ω Gf (k, ω) = δ which
determines the size of the holon Fermi surface. Qualitatively, the holon Fermi wavevector
kF scales asδ1/2 while the spin hopping rate is proportional toχ and linear in 1− δ. Thus,
the holons are heavy with a mass enhancement∼ 1/δ with a small Fermi surface. In fact this
is only a part of the true charge response—both numerical results [18] and loop corrections
to the holon self-energy [17] find that the true holon bandwidth is of ordert . The above
expression (11) only contains the coherent component of the holon propagator. However the
approach used in this paper of summing up ladder and bubble contributions to the charge
susceptibility only really treats the two-particle intermediate states in a reliable fashion.
Furthermore, as in all such microscopic Landau-like approaches, it is only the coherent
components of the intermediate propagators that yield the important singular low-energy and
wavevector contributions to the two-particle intermediate states—therefore we are justified
in retaining only the coherent mean field contribution (11) to the holon propagator.
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3. Charge susceptibility—lowest order

Our main interest in thet–J model lies in the nature of the charge fluctuations (rather than
the spin fluctuations which earlier works focused on). We therefore need to examine the
charge correlation function

χ{i, j, τ } = −〈
Tτni(τ )nj (0)

〉
(12)

whereni = ∑
σ C+

iσCiσ is the charge density operator. In the slave fermion representation
the charge density operator becomes

ni =
∑

σ

b+
iσ fif

+
i biσ (13)

which means that the correlation functionχ involves a combination of eight operators.
Therefore the method of calculation becomes crucial—a great simplification is made if the
occupancy constraint is enforced, because in that case

ni = fif
+
i

(
1 − f +

i fi

) = 1 − f +
i fi = fif

+
i (14)

that is the electron density is one minus the hole density. At least at the mean field level,
we know that the constraint is satisfied. Then the holon charge susceptibility becomes
χ{i, j, τ } = −〈Tτfif

+
i fjf

+
j 〉 which in mean field theory is simply the Lindhard function

for holes with the dispersion relation given by (12). After Fourier transforming, we can
write

χ(q, iω) =
∑

k

χ0(k, q, iω) =
∑

k

f (εk+q) − f (εk)

(iω − εk+q + εk)
(15)

whereεk = 2tχγ (k) = 2tχ(coskx + cosky) is the holon dispersion and we have defined
through this equation a subsidiary Lindhard function (not yet summed over wavevector)
χ0(k, q, iω) which will prove useful later. Fourier transforming in frequency we obtain the
equal-time correlation function as

χ(q, τ = 0) =
∑

k

n
(
εk+q − εk

)[
f

(
εk+q

) − f
(
εk

)] =
∑

k

f
(
εk

)(
1 − f

(
εk+q

))
(16)

wheren(ε) is the Bose distribution function andf (ε) the hole Fermi function. Thus, we
have that the charge density correlation function is one ‘cap’ ofk-space trapped between
two spinless holon Fermi surfaces displaced by wavevectorq. We can see easily that this
volume ofk-space is identical to the volume inside the one cap produced by the overlapping
electron Fermi function combination

∑
σ (1− f (εi))f (εk+q). Thus, we can see that for the

t–J model in the slave fermion representation, at the mean field level, the equal-time
density correlation function is similar to that ofspinlesselectrons with the same electron
count. This type of correlation function is the same as that used by Puttikaet al [2] to
compare with high-temperature series results for thet–J model. The difference however
is that our holon energy is somewhat narrower than the bare spinless fermion energy used
by those authors, since in our case the holon hopping rate is renormalized by the spinon
hopping probability, which vanishes in the undoped limit. This changes the details of the
temperature dependence of the equal-time correlation function, although the results become
identical at zero temperature. This discrepancy reflects that fact mentioned earlier that the
mean field results only capture part of the holon bandwidth found in numerical finite-size
calculations [18] and in loop corrections to the holon self-energy [17]. Nevertheless we
shall continue by examining scattering of the holons by the antiferromagnetic fluctuations
and the consequences for the charge susceptibility.
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In going beyond the mean field level, the constraint used in definingχ(q, τ ) becomes
harder to enforce. Such constraints are naturally enforced within functional integral
techniques, and, since we have chosen the more physically intuitive diagrammatic method,
we shall always have to bear in mind the possible dynamic effects arising from the boson
operators. However, we will assume the charge density depends primarily on the actual
propagation of holon density operators, and focus on one aspect of the charge density,
namely the effective fermion–fermion interaction mediated by the antiferromagnetic spin
bosons and only so far as it dresses the spinless fermionic Lindhard function.

4. Charge susceptibility—loop corrections

We calculate the loop corrections to the charge susceptibility of the electron using the
diagrammatic method. We shall use the hopping term in the Hamiltonian to generate the
particle–hole terms that we expect to be dominant at low frequencies and wavevectors. We
shall sum therefore, then bubble and ladder diagrams that correspond, as in the electron
gas and Hubbard models, to the dominant low-ω, q behaviour [19], using the hole–hole
interaction generated byHt at ordert2. Our approach is then consistent with assuming a
weak interaction. The antiferromagnetic interactionJ dresses this hole–hole interaction (and
may be ignored fort � J ). We shall only include antiferromagnetic interactions through
their one-loop self-consistent renormalizations of the boson propagators described in the
previous section. Thus the intermediate boson and holon propagators are those obtained at
the mean field level. The bubble contributions to the charge susceptibility series are given
as follows. The notation for the total sum of the bubble series (see figure 1) is

1

β2

∑
k1,ω1

∑
p1,ν1

χ0
(
k1, q, νq

)
Y

(
k2, νq, q

)
(17)

that is, we label

Y
(
k2ν1, q

) = 1 + 1

β

∑
k3

Veff

(
k2, q, k3, νq

) 1

β

∑
ω3

χ0
(
k3, q, ω3, νq

)
Y

(
k3, νq, q

)
(18)

where the holon–holon interaction is defined by (see figure 2)

Veff

(
k1, q, k2, νq

) =
∑
p

γ
(
k1 − p1

) 1

β

∑
ν1

{
Vd

(
p1, q, νq, ν1

)
γ
(
p1 − k2

)
+Vod

(
p1, q, νq, ν1

)
γ
(
k2 + p1 + q

)}
(19)

and the factor of−2t/N is absorbed inγc. The functionχ0 is the same subsidiary Lindhard
function as defined in (22) while the quantitiesVd andVod are the diagonal and off-diagonal
boson bubbles respectively. This series has formed similarities to the usual RPA approach,
the only complication being the momentum dependence of the vertices which leads us to
deal with integral equations instead of a single geometric sum. Despite its formal difficulty,
we will later show that for small hole doping the series simplifies considerably. To exact
fully low-ω, q behaviour in the integral equation, we need to isolate the low-ω, q limit of
the effective interaction. In order to calculate the effective interaction, we first compute the
diagonal boson bubbleVd .

1

β

∑
ν1

Vd

(
p1, q, νq, ν1

) = 1

β

∑
ν1

Gb

(
p1 + q, ν1 + νq

)
Gb

(
p1, ν1

)
. (20)
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Figure 1. Bubble series for the charge susceptibility
defined in (18). The single lines denote the holon
propagators while the double dotted line denotes the
effective holon–holon interaction defined in (19).

Figure 2. The actual diagonal and off-diagonal
elements of the double-boson exchange that mediates
an interaction between holons.

We convert the sum over the boson frequency, using the Bose functionN(ω), and convert
to an integral around a contour of a large semicircle (clockwise) excluding the poles of
N(ω).

1

β

∑
ν1

Vd

(
p1, q, νq, ν1

) =
{

N(−ωp1+q)(ωp1+q − µ + Qp1+q)(iνq + ωp1+q − µ + Qp1)

2ωp1+q(iνq + ωp1+q − ωp1)(iνq + ωp1+q + ωp1)

+N(−ωp1)(ωp1 − µ + Qp1+q)(ωp1 − iνq − µ + Qp1)

2ωp1(ωp1 − iνq − ωp1+q)(ωp1+q − iνq + ωp1)

+N(ωp1+q)(ωp1+q + µ − Qp1+q)(iνq − ωp1+q − µ + Qp1)

2ωp1+q(iνq − ωp1+q + ωp1)

+N(ωp1)(ωp1 + µ − Qp1+q)(ωp1 + iνq + µ − Qp1)

2ωp1(ωp1 + iνq + ωp1+q)(iνq + ωp1 − ωp1+q)

}
.

Taking the zero-frequency limit ofνq = 0 for the boson,

1

β

∑
ν1

Vd

(
p1, q, νq = 0, ν1

) = (µ − Q(p1))(µ − Q(p1 + q)) − ωp1ωp1+q

2ωp1ωp1+q(ωp1 + ωp1+q)
. (21)

The off-diagonal component denoted asVod is also similarly evaluated

Vod = 1

β

∑
F

(
p1 + q, ν1 + νq

)
F

(
p1, ν1

)
. (22)

Using the same procedure as above to carry out the frequency summation, we obtain for
ω = 0, q = 0

1

β

∑
ν1

Vod

(
p1, q = 0, νq = 0, ν1

) = 1

β

∑
ν1

Vd

(
p1, q = 0, νq = 0, ν1

)
= J 2|1p|2

4ω3
p1

coth
(
βωp1/2

)
(23)

so the effective holon–holon interaction at zeroω, q takes the form

Veff

(
k1, k2

) =
∑
p

γ
(
k1 − p

){
γ
(
p − k2

) + γ
(
p + k2

)}J 2|1p|2
4ω3

p1

coth
(
βωp1/2

)
.

Now to understand the low-ω, q limit, we have to set other wavevectors on thehole
Fermi surface, so we should compare the hole Fermi surface wavevector to the Brillouin
zone size. In the case of the doping holes being very small, we can estimate the hole
wavevectorkF (h) by assuming a spherical hole Fermi surface

δ =
∑

k<kF (h)

=
∫ kF (h)

0
dk

k

2π
= k2

F (h)

4π
. (24)

Hence,kF (h) ' √
4πδ which is much smaller than the Brillouin zone. Therefore, we can

ignorek1 andk2 in comparison withp1, as far as the evaluation ofVeff is concerned.
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Then,

Veff

(
k1, k2

) ≈ Veff = 2
∑
p1

γ 2
(
p1

)
J 2|1p1|2

coth(βωp1/2)

4ω3
p1

. (25)

Now we turn to the ladder contributions to the charge susceptibility (see figure 3). The ladder
interaction between holons takes a form which, after allowing for diagonal and off-diagonal
pairings of the boson lines, yields a contribution

Ṽ lad
(
q, νq, k1 − k2, ω1 − ω2

) = 1

β

∑
νp,p

γ
(
k2 + q − p

){
G

(
p, εp

)
G

(
p + k1 − k2, εp

+ ω1 − ω2
)
γ
(
k2 − p

) + F
(
p, εp

)
F

(
p + k1 − k2, εp + ω1 − ω2

)
× γ

(
2k1 − k2 + p

)}
. (26)

Our ultimate interest is in theq, νq → 0 limit of this interaction, which may be written in
terms of the bubble interaction as

V lad
(
0, 0, k1 − k2, ω1 − ω2

) = V eff
(
k1, k2, q = k1 − k1, νq = ω1 − ω2

)
. (27)

Meanwhile, the full ladder series for the holon bubble entering the charge susceptibility
becomes

= 1

β

∑
k1,ω1

χ0
(
k1, q, ω1, νq

)
Y

(
k1, νq, q

)
(28)

where the ladder sum is represented as an integral equation

Ỹ
(
k1, νq, q

) = 1 + 1

β

∑
k2,ω2

V lad
(
q, νq, k1 − k2, ω1 − ω2

)
(−1)

×χ0
(
k2, q, ω2, νq

)
Ỹ

(
k2, νq, q

)
(29)

which in the low-frequency, low-wavevector limit takes the form

Ỹ
(
k1

) = 1 − 1

β

∑
k2,ω2

Veff

(
k1, k2, ω1 − ω2, k2 − k1

)
χ0

(
k2, q, ω2, νq

)
Ỹ

(
k2

)
(30)

written now in terms of the effective bubble diagram interaction. While for general dopings
we have to include the full momentum dependence of the interaction, we note again that,
as in the bubble series, the analysis simplifies considerably for small fillings. It may easily
be shown that the intermediate frequency sums yield Fermi functions, which for smallq fix
the energies inVeff within the narrow coherent holon band, and fix the wavevectors on the
small-holon Fermi surface. It follows that, as in the bubble case, the energy and wavevector
dependence of the effective interaction may be dropped for small hole dopings, since the
wavevector sum in (33) is over the entire Brillouin zone. We obtain a closed expression
for Ỹ

Ỹ = 1/
[
1 − Veff χ

(
q, iνq

)]
. (31)

Combining this expression with the bubble sum vertex,

Y = 1/
[
1 + Veff χ

(
q, iνq

)]
(32)

and subtracting the leading-order bubble (which we have double counted in both series),
we obtain for the charge susceptibility from both ladder and bubble series,

χ
(
q, iνq

) = χ(0, 0){Ỹ + Y − 1}
= χ(0, 0)

[
1 + (

Ṽeff χ
(
q, iνq

))2]/[
1 − (

Ṽeff χ
(
q, iνq

))2]
(33)
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Figure 3. Ladder series for the charge susceptibility
defined in (26). The symbols are the same as in figure 1.

Figure 4. Ladder and bubble sums that enter into the
effective interaction that yields loop corrections to the
fermion self-energy.

which shows a divergence at the point where|Ṽeff χ(q, iνq)| = 1, showing an instability
presumably against charge ordering in the ground state given by the mean field isolation.

We can check the consistency of our diagrammatic result against the usual weak-coupling
approach of summing ladder and bubble diagrams as in for example the Hubbard model
[19] treated within the paramagnon approach. Once we allow for the spinless nature of the
fermions, which allows both even and odd numbers of fermion loops in the bubble graphs,
it can be straightforwardly shown (see figure 4) that the full fermion self-energy (resulting
from holon scattering off the antiferromagnetic fluctuations) is a convolution of the fermion
propagator with the effective interactionVtot (q, iω) = V 2

eff χ(q, iω).
Thus we obtain a pole in the density–density correlation function where|Veff χ(q, ω)| =

1 where the effective fermion–fermion interaction is, for finite temperatures, given by (26).
We have already approximated this function by its zero-frequency, zero-wavevector limit,
since the coherent holon Fermi wavevector and energy are much smaller than the zone
boundary and the antiferromagnetic order parameter for the very small doping limit is of
interest to us here. Hence our discussion is concerned with (1) the limitt > J for our
perturbation method to be valid, and (2)tδ (the coherent holon bandwidth)� J for the
above simplification to hold. The latter inequality allows us to replace the spinon energy
ωp by its value in the undoped limit so that

Vtot ≈ J

2
12

0

∑
p

γc(p)2γs(p)2

(µ2
B − 12

0γs(p)2)3/2
coth

(
βωp/2

)
(34)

whereµB (the boson chemical potential) varies on a scale set by the antiferromagnetic order
parameter10.

Next we examine the behaviour of this interaction in the low-temperature limit
remembering the mean field results [11, 12]. At zero temperature the boson energy gap
vanishes at those points where1k takes on its largest values i.e. at(π/2, π/2). At finite
temperatures the boson chemical potential is reduced below its zero-temperature value
slightly and the dominant contribution to the momentum integration comes from near
(π/2, π/2). Cutting off the momentum sum at a value of the order of the zone width
yields

Veff = (
4T t2/12

0J
2π

) ∫ qc

0
q3 dq/

(
q2 + ξ2

)2
(35)

(where ξ denotes the correlation length) which may be considerably simplified when
one remembers the form of the gap equation at low temperatures, which after similar
manipulations takes the form 1= (4T/πJ12)

∫ qc

0 dq q/(q2 + ξ2). This leads, to leading
logarithmic order, to a very simple result for the effective interaction at low temperatures,
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that is, thatVeff = t2/J apart from corrections of orderT/J (which we assume to be
small).

The reason for the holon–holon interaction assuming this form may be understood
as follows: at long wavelengths and low temperatures the boson pair exchange graphs
are dominated by the same low-energy spinon singlet fluctuations that determine the
antiferromagnetic order parameter. These fluctuations occur on an energy scale given by
J , but couple to the holons via the bare hopping matrix elementt . Hence even the most
straightforward perturbation arguments would lead one to expect an interaction of order
t2/J . We note that it is the bare hopping matrix elementt that appears here rather than the
renormalized matrix elementtχ—in fact the reappearance of such bare energy scales is a
standard feature of loop corrections around mean field theories.

Turning to the hole propagators we note that since the temperature scale characterizing
the formation of the spiral state is of orderJ , and the coherent holon bandwidth is of order
tδ, there exists quite a range of temperatures between these two values. For small hole
dopings in which the holon Fermi surface may be considered parabolic, and therefore with
a constant density of statesD∗(0), the zero-frequency, zero-energy Lindhard function is
simply approximated as

χ(0, 0) =
∑

k

(−∂f/∂εk

) = D∗(0)
[
1 − exp

(−δ/T D∗ ∗ (0)
)]

(36)

where we have used the well known relation for the chemical potential in two dimensions
to eliminate the chemical potential. Thus for temperatures higher than the coherent holon
bandwidth,T � tδ, χ = δ/T (consistent with a Curie susceptibility) so the condition for
a long-wavelength charge instability becomes

t2δ/(JT ) = 1 (37)

which implies long-wavelength charge ordering at a temperatureTc = t2δ/J . At zero
temperatureχ(0, 0) = 1/D∗(0) = 1/tδ so the compressibilityχ = −Jδ/T which is
indeed negative.

5. Discussion and conclusion

Thus we obtain the result that the compressibility (being the static, long-wavelength limit
of the charge density correlation function) diverges at a temperature given byTc = t (tδ/J ),
which can be an order of magnitude smaller than the bare electron bandwidth. This suggests
that the small-doping sector of thet–J model is unstable against long-wavelength charge
ordering. It certainly has been argued that for both smallJ/t and largeJ/t the energy
cost to add holes is lower for a ‘phase separated’ state [3] where the holes and spins reside
in separate regions of space. The original arguments in favour of phase separation in the
small-J/t regime follow from consideration of the frustrated nature of holon motion in
an antiferromagnet. The energy cost of putting the hole in a segregated hole-rich region is
lower than the cost of placing the hole in a uniform phase. Our result supports this condition
as long as we identify the divergence of the static long-wavelength charge susceptibility i.e.
the compressibility, as indicating phase separation.

In fact the present work is certainly not the first calculation to find phase separation
in the slave fermiont–J model. Auerbach and Larson [20] and Ivanov [21] showed that
the ground state energy calculated at the mean field level showed, as a function of doping,
a region with a concave dependence onδ implying a negative compressibility and hence
an instability towards phase separation. Later work [22] included the nearest-neighbour
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Coulomb repulsion, treating the model again at mean field level, and found the spiral
state to be stable for dopings larger than a critical value. A negative compressibility was
also obtained in the large-S limit where the spins behave classically [23]. While these
earlier calculations start specifically from the static mean field zero-temperature limit, our
calculation provides support for the instability of the spiral state from the standpoint of
dynamic finite-temperature change fluctuations with loop corrections.

We should note that the present work is not the only study of fluctuations around the
mean field level. The authors of [17] in fact calculated the fermion lifetime resulting
from a fermion interaction similar toVeff in (26). However the first calculation of holon
interactions was carried out by Ivanov [24] who constructed the holon–holon Hamiltonian
by performing a canonical transformation on the kinetic part of thet–J model (written in
terms of Bogoliubov operators for the spiral spin state). Ivanov found the interaction (at
T = 0) to be attractive, which he took as signifying a tendency towards p-wave pairing.
In fact his conclusions of an attractive interaction are entirely consistent with ours (which
imply a negative Landau parameterF s

0 ).
Similar conclusions regarding the instability of magnetically correlated phases of the

t–J model against phase separation were reached using the slave boson approach [7]. These
authors studied the stability of the much vaunted dimer and flux phases at the mean level and
found that for fixedJ/t the magnetically correlated phases were stable at low hole doping
while a uniform Fermi liquid phase was stable at higher hole doping. However these authors
also found, on examining the free energy as a function of hole doping, regions of negative
curvature for fillings away from the insulating value. Via a Maxwell construction they
showed the consequent existence of phase separation for hole dopings less thanJ/t , which
is certainly consistent with our result of phase separation forδ � J/t . In slave boson
methods however the occurence of phase separation in this small-J/t region arises again
from the frustrated kinetic energy of holes in a background with magnetic correlations.
Other extensions of the slave boson approach to models with a greater number of bands [8]
find phase separation to occur in the limit where the charge transfer energy is larger than
the hopping rate. Phase separation is also suggested in ‘weak-coupling’ approaches to the
Hubbard model, where it is found [25] that the antiferromagnetic Hartree–Fock solution is
unstable for infinitesimal hole doping.

The techniques employed in this paper leave room for a lot of improvement—the
coherent part of the holon propagator could be corrected to one loop order by including
self-energy corrections. Such a correction might incorporate polaronic or ‘spin-bag’ effects
to an appropriate degree, lowering the holon energy as well as changing the quasiparticle
weight of the coherent holon propagator. A more thorough ‘mode-coupling’ diagrammatic
analysis might allow for the charge stabilities to occur at wavevectors other than theq = 0
limit studied in this paper. According to the present method we obtain such a strong
holon—holon interaction via the exchange of spin fluctuations that the most likely scenario
for phase separation is by the complete segregation of charge and spin (as in the earlier
methods [3, 7, 8]), thus enabling the holons to avoid the exchange of spin fluctuations.

In conclusion, we have, in this paper, studied the charge susceptibility within the
framework of the slave fermion formulation of thet–J model in which magnetic correlations
are naturally incorporated at the lowest order. We find that at the mean field level the equal-
time density correlation function agrees qualitatively at least with the conclusions of recent
high-temperature series studies. Going beyond the mean field level and including loop
corrections via the ladder and bubble series suggests, for small doping (δ � J/t) at least,
an instability against charge ordering at long wavelength which we interpret as indicating the
onset of phase separation. Thus instability is driven by antiferromagnetic spin fluctuations
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which couple to the holons via the bare hopping matrix elementt , leading to a large effective
holon–holon interaction of ordert2/J . This interaction then enters the ladder and bubble
series for the charge susceptibility. The results therefore complement previous mean field
studies by obtaining evidence for phase separation from the loop corrections themselves.
Extensions to more realistic models with a greater number of bands is left to future study.
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